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Abstract 

Epitranscriptomics, also known as “RNA epigenetics”, is a chemical modification for RNA regulation. Ribonucleic acid 
(RNA) methylation is considered to be a major discovery following the deoxyribonucleic acid (DNA) and histone 
methylation. Messenger RNA (mRNA) methylation modification accounts for more than 60% of all RNA modifica-
tions and N6-methyladenosine (m6A) is known as one of the most common type of eukaryotic mRNA methylation 
modifications in current. The m6A modification is a dynamic reversible modification, which can directly or indirectly 
affect biological processes, such as RNA degradation, translation and splicing, and can play important biological roles 
in vivo. This article introduces the mRNA m6A methylation modification enzymes and binding proteins, and reviews 
the research progress and related mechanisms of the role of mRNA m6A methylation in the nervous system from the 
aspects of neural stem cells, learning and memory, brain development, axon growth and glioblastoma.
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Background
Epitranscriptomics, also known as “RNA epigenetics”, is 
a chemical modification for RNA regulation [1]. Accord-
ing to its function, RNA can be divided into two broad 
categories, including encoding protein mRNA and non-
coding RNA. With the deep research of epitranscriptom-
ics, the researchers found methylation modification on 
mRNA, which is involved in the regulation of eukaryotic 
gene expression [2–4].

The mRNA is a type of RNA with genetic informa-
tion synthesized by DNA transcription, which acts as a 
template in protein synthesis and determines the amino 
acid sequence of the peptide chain [5]. It is an important 
RNA in the human body. The methylation is the process 
of catalytically transferring a methyl group from an active 
methyl compound such as S-adenosylmethionine (SAM) 
to another compound, which can chemically modify cer-
tain proteins or nucleic acids to form a methylated prod-
uct [6]. In biological systems, methylation influences 
heavy metal modification, regulation of gene expression, 

regulation of protein function, RNA processing, etc. [7]. 
At the early 1970s, scientists discovered the presence of 
the methylation modification in mRNA [8, 9]. The mRNA 
methylation modification mainly located in the nitrogen 
atom of the base group to form m6A, which is enriched 
in long exons and overrepresented in transcripts with 
alternative splicing variants [10]. The mRNA methyla-
tion modifications also include 5-methylcytosine (m5C), 
N1-methyladenosine (m1A), 5-hydroxymethylcytosine 
(5hmC), N6, 2′-O-dimethyladenosine (m6Am), 7-meth-
ylguanine (m7G) (Fig. 1). These modifications can affect 
regulation of various biological processes, such as RNA 
stability and mRNA translation, and abnormal mRNA 
methylation is linked to many diseases [11].

Main text
Discovery and distribution of m6A
The m6A is the most common and abundant methylation 
modification in mRNA [12, 13]. In 1974, Desrosie used 
the polyadenosinic acid (PolyA) structure in eukaryotes, 
to discover the methylation status of mRNA in hepatoma 
cells, and found that the main methylation modification 
in mRNA was m6A (approximately 80%) [8]. In addition, 
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the presence of m6A was also detected in a variety of 
eukaryotes and viral mRNA [14].

In mammals, m6A is widely distributed in multiple tis-
sues. Studies by Meyer showed that m6A expression was 
higher in liver, kidney and brain than in other tissues. It 
has also been found that the content of m6A is very dif-
ferent in various cancer cell lines [15]. With the help of 
high-throughput sequencing technology, a rough m6A 
modification map has been obtained. Meyer studied the 
m6A modification in mouse brain and found that it was 
mainly distributed inside the gene (94.8%), where the 
proportions in the protein coding region (CDS), untrans-
lated regions (UTRs) and introns are 50.9%, 41.9%, and 
2.0% respectively [16]. The m6A in the UTRs region tends 
to be enriched in the 3′UTR, while in the CDS region it is 
mainly enriched near the stop codon [17]. The m6A mod-
ification occurs mainly on the adenine in the RRACH 
sequence, where R is guanine or adenine, and H is uracil, 
adenine or cytosine [18] (Fig. 2).

mRNA m6A methylation modification enzyme
The methylation modification of m6A has been proved to 
be reversible, as it involves both methyltransferase and 
demethylase. The main role of methyltransferases is to 
catalyze the m6A modification of mRNA, while demeth-
ylases act on demethylation of bases that have had m6A 
modification [19, 20].

m6A methyltransferase
The m6A methyltransferase, also known as “Writ-
ers”, is an important kind of catalytic enzymes [21]. 

Methyltransferase like 3/14 (METTL3/14), Wilms’ 
tumour 1-associating protein (WTAP), KIAA1429 and 
RNA binding motifs protein 15/15B (RBM15/15B) are 
core components of the m6A methyltransferase, which 
form complexes that work together to perform catalytic 
functions. Besides, E3 ubiquitin-protein ligase Hakai 
(HAKAI) and zinc finger CCCH-type containing 13 
(ZC3H13) are also the part of the mRNA methyltrans-
ferase complex.

The METTL3 is identified as a SAM-binding com-
ponent of the complex and has its own catalytic ability, 
which is highly conserved in eukaryotes [22]. METTL14 
is closely homologous to METTL3. It does not bind to 
the SAM domain and does not with independently m6A 
methyltransferase function. Biochemical characterization 
has shown that METTL3 and METTL14 proteins form a 
stable complex with a stoichiometric ratio of 1:1, and the 
methylation activity of the complex is higher than that of 
METTL3 alone. Among them, METTL3 is a catalytically 
active subunit, and METTL14 plays a key role in sub-
strate identification [23, 24].

The WTAP is a regulatory subunit of the m6A meth-
yltransferase complex, which can interact with METTL3 
and METTL14. Knocking out WTAP can significantly 
reduce the m6A peak in cellular mRNA, even more effec-
tive than knocking down METTL3 or METTL14. The 
WTAP-bound gene has a change in alternative splicing 
patterns [25].

The KIAA1429, also known as vir-like m6A methyl-
transferase associated (VIRMA), is a homologous protein 
of the Virilizer protein in Drosophila, which is closely 
related to the methyltransferase complex. The N-termi-
nus of KIAA1429 has the ability to gather methyltrans-
ferase-catalyzed core METTL3/METTL14/WTAP that 
can achieve the regulation of fixed-point m6A levels on 
mRNA [26].

It was identified by co-immunoprecipitation that the 
binding of RBM15/15B at the RRACH sequence site 
is three to fourfold o higher than that at the non-meth-
ylation site. Knocking down the RBM15 or RBM15B 
alone can reduce the m6A levels in cellular mRNA, and 

Fig. 1  Different types of mRNA methylation modification

Fig. 2  RRACH sequence
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knocking down both RBM15 and RBM15B can result in a 
significant decrease of the m6A levels in mRNA [27].

The HAKAI, also known as CBL proto-oncogene like 
1(CBLL1), is an E3 ubiquitin ligase. Down-regulation of 
the HAKAI in Arabidopsis can result in a decrease in 
m6A level [28]. ZC3H13 is also an important component 
of the methyltransferase complex and is key to anchor 
the complex in the nucleus [29]. Methyltransferase like 
16 (METTL16) is a m6A methyltransferase of the mRNA 
precursor that maintains SAM homeostasis by regulating 
alternative splicing of methionine adenosyltransferase II 
alpha (MAT2a) [30–32].

m6A demethylase
The m6A demethylase, also known as the “Erasers”. In 
eukaryotes, m6A demethylases are fat mass and obe-
sity-associated protein (FTO) and alkB homolog 5 (alkB 
homolog 5, ALKHB5). In Arabidopsis, the alkB homolog 
10B (ALKHB10B) has also been found as a m6A demeth-
ylase of mRNA.

The FTO also known as alkB homolog 9 (ALKBH9), 
which is a member of the Alkb protein family and associ-
ated with obesity. FTO is the first-discovered RNA dem-
ethylase. The long stem loop domain at the C-terminus of 
FTO enables the FTO proteins demethylate [33, 34].

The ALKBH5 is another protein of the AlkB family and 
plays an important regulatory role in biological processes, 
such as mRNA processing. The ALKBH5 is similar to 
FTO and is also a Fe2+ and α-Ketoglutaric acid depend-
ent non-heme oxygenase. The ALKBH5 has an alanine-
rich region at the N-terminus and a unique coiled-coil 
structure. It only demethylates the m6A modification on 
single-stranded RNA/DNA, and the catalytic reaction 
removes methyl groups directly from m6A-methylated 
adenosine instead of oxidative demethylation [35, 36].

The ALKBH10B is an m6A demethylase of mRNA 
in Arabidopsis, which regulates mRNA stability and 
affects the transformation of Arabidopsis from vegetative 
growth to reproductive growth [37].

mRNA m6A methylation binding protein
The m6A-modified mRNA that performs a specific bio-
logical function requires a specific RNA-binding pro-
tein-readers. Binding assays of RNA protein in  vitro 
have identified a variety of binding proteins, including 
YTH domain containing RNA binding protein (YTP), 
heterogeneous nuclear ribonucleoprotein (hnRNP), 
eukaryotic initiation factor 3 (eIF3), Insulin-like growth 
factor 2 mRNA-binding protein (IGF2BP) and Proline 
rich coiled-coil 2A (Prrc2a). The functions of these 
binding proteins mainly include specific binding to the 
m6A methylation region, weakening the homologous 

binding to RNA reading proteins, and altering the sec-
ondary structure of RNA to alter protein–RNA interac-
tion [38, 39].

YTH domain containing RNA binding protein 
include YTH domain-containing family protein 1/2/3 
(YTHDF1/2/3) and YTH domain-containing protein 
1/2 (YTHDC1/2). YTHDF1/2/3 and YTHDC2 specifi-
cally recognize the m6A-modified mRNA in the cyto-
plasm, while the recognizing sites of YTHDC1 are 
mainly in the nucleus. These proteins all have a YTH 
domain at the C-terminus. They are capable of overlap-
ping with the m6A RRACH fragment to mediate RNA-
specific binding, while its proline/glutamine/asparagine 
enrichment (P/Q/N-rich) domain is related to subcel-
lular localization [40, 41].

YTHDF1 is combined with translation initiation 
factors and ribosomes, improving the translation effi-
ciency. YTHDF2 is the first-discovered binding protein. 
Specifically, it recognizes and binds m6A-containing 
RNAs, and regulates mRNA stability [42, 43]. YTHDF3 
promotes the translation of mRNA and regulates the 
mRNA stability. YTHDF3 and YTHDF1 coordinately 
control during translation [44, 45]. YTHDC1 regu-
lates the mRNA cleavage by recruiting splicing factors 
[46–48]. YTHDC2 accelerates the degradation of the 
modified mRNA and enhances the translation of the 
corresponding protein by recognizing m6A [49].

The hnRNP is a group of RNA-binding proteins that 
contain nearly 30 nucleic acid-binding proteins with 
molecular weights ranging from 30 to 120 kDa, which 
can interact with each other to form the complex, 
where A1, A2, B1, B2, C1 and C2 are the main core 
components. Heterogeneous nuclear ribonucleoprotein 
A2/B1 (HNRNPA2B1) is capable of specifically recog-
nizing the m6A modifications on transcripts, activat-
ing downstream variable shear events of partial genes 
[50, 51]. Heterogeneous nuclear ribonucleoprotein 
C (HNRNPC) is responsible for recognizing the m6A 
modifying group and mediating the processing of the 
mRNA precursor in the nucleus, affecting the abun-
dance and alternative splicing of target transcripts. The 
m6A can increase the accessibility of its surrounding 
RNA sequences binding to heterogeneous nuclear ribo-
nucleoprotein G (HNRNPG). In the transcriptome, the 
m6A site regulates RNA-HNRNPG interactions to alter 
target mRNA expression and alternative splicing pat-
terns [52].

In mammalian cells, eIF3 is the largest eukaryotic 
initiation factor and plays a key role in the initiation of 
eukaryotic translation. It is able to directly bind to the 
5′UTR m6A of mRNA, thereby facilitating translation 
of mRNA. IGF2BP protein is a unique m6A reader. The 
family mainly includes IGF2BP1/2/3. IGF2BP can make 
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the target gene and corresponding translation more 
stable [53]. Prrc2a is a new m6A reader that stabilizes 
mRNA expression by binding to a consensus GGACU 
motif in the CDS region in an m6A-dependent manner 
[54] (Fig. 3).

Neurobiological function of mRNA m6A methylation
Sequencing results have showed that the level of RNA 
m6A modification increase significantly during embryo-
genesis [55–58]. Compared to other organs or tissues, 
the overall level of m6A in the head is significantly higher. 
This suggests that the mRNA m6A modification has 
potential neurobiological functions in the nervous sys-
tem and is worthy of further study [59–63].

Effect of m6A on neural stem cells
Neural stem cells maintain cell populations through 
self-renewal, and can differentiate into various nerve 
cells such as neurons, astrocytes, and oligodendrocytes 
[64–67]. A number of studies have shown that the mRNA 
m6A modification can affect the self-renewal and differ-
entiation of neural stem cells [68–70]. These new findings 
will promote stem cell therapy and gene-targeted therapy 
for neurological diseases.

Inactivation of Mettl3 in mouse and human embry-
onic stem cells leads to a decrease in m6A, and severely 
impairs the transition of neurons from self-renewal to 
differentiation. The knockout of Mettl3 can cause early 
embryonic lethality and impair the formation of mature 
neurons in the embryoid body [58, 71]. Wang et  al. 
found that when knocking out Mettl14 in embryonic 
neural stem cells in a mouse model, the proliferation of 

neural stem cells was significantly reduced and differen-
tiated prematurely. It indicates that m6A can promote 
the proliferation of neural stem cells and prevent prema-
ture differentiation of cells, thus ensuring the reserve of 
neural stem cell bank [72, 73]. Mettl14 and Mettl3 can 
participate in neurogenesis by regulating the cell cycle 
progression of cortical neural stem cells, which acts in a 
m6A-dependent way [74]. The SMAD2/3 protein binds to 
the METTL3-METTL14-WTAP complex and promotes 
the differentiation of embryonic stem cells into neuroen-
dodermal cells [75].

The Ythdf2-mediated m6A mRNA clearance has a reg-
ulatory effect on neurodevelopment in mice. Prolifera-
tion and differentiation of neural stem cells are seriously 
affected by the deletion of embryonic Ythdf2 [76].

Effect of m6A on learning and memory
In the emerging field of epitranscriptomic mechanisms, 
mRNA m6A modification has potential role in learning 
and memory [77]. It regulates physiological and stress-
induced behavior in the adult mammalian brain, and 
augments the strength of weak memories [78–80]. As a 
newly identified element in the region-specific gene reg-
ulatory network in the mouse brain, mRNA m6A modi-
fication plays a vital role in the death of dopaminergic 
neuron [81, 82].

Mettl3-mediated RNA m6A modification has the direct 
effect on regulating hippocampal-dependent long-term 
memory formation. The decrease of Mettl3 in the mice 
hippocampus may reduce its memory consolidation, and 
adequate training or restoration would restore the abil-
ity of learn and memory. The abundance of Mettl3 in the 

Fig. 3  mRNA m6A methylation-associated protein
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hippocampus of wild-type mice is positively correlated 
with learning efficiency, and the overexpression of Mettl3 
can significantly enhance the long-term memory con-
solidation [83]. METTL14 is critical for striatum function 
and transcriptional regulation of learning epitopes. In 
cell experiments, the deletion of METTL14 reduces stria-
tum m6A levels without altering cell number or morphol-
ogy, increases neuronal excitability and severely impaired 
striatal-mediated behavior [84].

Fto can regulate the activity of dopaminergic midbrain 
circuits. Inactivation of the Fto gene weaken neuronal 
activity and behavioral responses that are dependent on 
dopamine receptor type 2 (D2R) and type 3 (D3R) (collec-
tively D2-like receptors) [85]. FTO also regulates dopa-
minergic neurotransmission deficits caused by arsenite 
[86]. Walters [87] has found that Fto plays an important 
role in the formation of mouse hippocampal-dependent 
memory. The decrease in Fto protein observed shortly 
after the situational fear reflex indicates that Fto typically 
limits memory formation. The m6A is regulated in the 
activity-dependent way in the adult brain, and may fine-
tune mRNA turnover during memory-related processes 
[88]. When knocking out the Fto gene in the prefron-
tal cortex of mice, the intensity of m6A on several fear-
related genes in neurons increases significantly, and the 
knockdown of Fto further enhances the consolidation of 
fear memory [89]. FTO plays important roles in learning 
and memory. The loss of FTO led to the altered expres-
sion of several key components of the brain derived neu-
rotrophic factor pathway that were marked by m6A [90].

In the adult mouse hippocampus, the m6A binding 
protein Ythdf1 can promote neuronal stimulation of pro-
tein translation of target transcripts, thereby facilitating 
learning and memory. Mice with a genetic deletion of 
Ythdf1 have showed the deficits of learning and memory, 
impaired hippocampal synaptic transmission and long-
term potentiation [91]. Prrc2a controls the specification 
and myelination of oligodendrocyte, and Prrc2a knock-
out induces cognitive defects in a mouse model [54].

Effect of m6A on brain development
Widespread and dynamic m6A methylation were iden-
tified in the developing mouse cerebellum. RNA m6A 
methylation is controlled in a precise spatiotemporal 
manner and participates in the regulation of postnatal 
development of the mouse cerebellum [92, 93].

Specific inactivation of Mettl3 in mouse nervous sys-
tem causes severe developmental defects in the brain. 
Mettl3-mediated m6A participates in cerebellar develop-
ment by controlling mRNA stability of genes involved in 
cerebellar development and apoptosis [94].

Under the low pressure and hypoxia, the level of RNA 
m6A methylation in the cerebellar of Alkbh5-deficient 

mouse is imbalanced, which leads to an increase in the 
efficiency of extranuclear RNA excretion and a signifi-
cant change in cerebellar phenotype, including neuronal 
structural disorder, abnormal cell proliferation and differ-
entiation, and other phenotypes [92].

Effect of m6A on synaptic growth
The m6A modification plays a key role in synaptic regen-
eration of mature mouse neurons. Increased m6A in 
somatic neurons alters the transcriptome response to 
synaptic plasticity [77, 89]. The m6A methylation of 
neurological function-related genes in the hippocam-
pus of human immunodeficiency virus transgenic rats is 
significantly different, suggesting synaptic damage and 
neurodegeneration [95]. The m6A methylation of synap-
tic mRNAs critically contribute to synaptic function in 
healthy adult mouse forebrains [96].

Deletion of Mettl14 reduces functional axonal regener-
ation in the peripheral nervous system of the body. After 
knockdown of Mettl14, the axonal regeneration of reti-
nal ganglion neurons in the central nervous system is also 
diminished [97].

The m6A modification can affect axon growth by regu-
lating local translation of mRNA in neuronal axons. FTO 
is highly expressed in axons of neurons. Local translation 
in axons plays an important role in neurodevelopment, 
including axon guidance, axon growth, and neuronal 
specifications [90, 98].

The mRNA m6A modification of synaptic plays a key 
role in synaptic function. After knocking out the den-
dritic positioning readers Ythdf1 and Ythdf3 in cultured 
hippocampal neurons, m6A-reader-deficient neurons 
have abnormal spine morphology and the spines are 
reduced. Knocking out the Ythdf1 gene of mouse, in the 
peripheral and peripheral nervous system, functional 
axon regeneration is reduced [97, 99]. The neurons of 
YTHDF2−/− could not produce normal synapses [76].

Effect of m6A on glioblastoma
Several studies have revealed the role of m6A witers 
and erasers in glioblastoma. Changes of the m6A level 
in glioblastoma stem cell-like cells (GSC) severely affect 
the growth, self-renewal and development of tumor. The 
mRNA m6A methylation is expected to be a new target 
for the treatment of glioblastoma [100].

Decreasing the m6A levels by knocking down METTL3 
and/or METTL14 enhance growth and self-renewal of 
GSCs in vitro, and promote the ability of GSCs to form 
brain tumors in  vivo. The Mettl3-mediated m6A modi-
fication plays a key role in neurosphere maintenance 
and glioma cell dedifferentiation [101–103]. Ethyl form 
of methylbenzoic acid (MA2) is a selective inhibitor of 
FTO, which can significantly inhibit tumor progression 
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and prolong the lifespan of GSC mice. Therefore, The 
Fto may play a key carcinogenic role in GSC self-renewal 
and is required for the development of glioblastoma 
[101]. ALKBH5 is able to maintain stem cell in malig-
nant glioma cells, and ALKBH5-mediated m6A modifi-
cation on forkhead box M1 (FOXM1) mRNA is involved 
in the maintenance of tumor stem cell. High expression 
of ALKBH5 predicts poor prognosis in glioblastoma 
patients [104, 105] (Table 1).

Conclusion
In summary, the mRNA methylation is an important 
epitranscriptomic modification and the m6A is highly 
expressed in the brain. The mRNA m6A methylation has 
a wide range of effects on the nervous system, and plays 
an important part in self-renewal of neural stem cells, 
learning memory, brain development, synaptic growth 
and proliferation of glioma cells. This new regulatory 
system will promote targeted therapy for neurological 
diseases.

However, mRNA m6A methylation is a relatively new 
field and many problems remain unknown. Up till now, 
all of the demethylases found belong to the AlkB family, 
and whether other proteins in the AlkB family are also 
involved in mRNA demethylation is worthy for further 
study. HNRNPA1, HNRNPG and HNRNPM play a key 
role in the methylation of protein arginine. These pro-
teins are similar to HNRNPA2B1 and HNRNPC, and 
belong to the hnRNP binding protein family. It is worth 
exploring its role in mRNA m6A methylation.

Variations in the FTO gene can not only regulate D2R-
dependent reward learning [106–108], but also affect 
nerve adjust food visual, produce more frequent rewards 
[109–111], affect the control of mood and impulse 
[112–114], and affect obesity by regulating brain signal-
ing pathways [115, 116]. The homozygous mutation of 
FTO gene can reduce the brain capacity of healthy elderly 
people, increase the susceptibility to brain atrophy dur-
ing aging, and even affect the brain volume of adolescents 
[117, 118]. The genetic polymorphism of FTO is related 
to attention-deficit/hyperactivity disorder (ADHD), Alz-
heimer’s disease and depression [119–124]. Whether it 

is as demethylase that affects these diseases, is worthy of 
further study.

The genetic polymorphism of ZC3H13 is associ-
ated with schizophrenia. Nito, another member of the 
m6A methyltransferase complex in Drosophila, called 
RBM15 in human, controls the axonal growth and 
differentiation and regulates the synapse formation 
through neuronal activity. Whether human ZC3H13 
and RBM15 genes have the effect on synaptic growth, is 
worthy of further study.

To study the methylation mechanism of mRNA m6A 
and find potential targets for treatment, it is hopeful 
to develop inhibitors or agonists of related proteins for 
clinical treatment in the future.
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